
Carnegie Mellon
Software Engineering Institute

Trustworthy Refinement
Through Intrusion-Aware
Design

Robert J. Ellison
Andrew P. Moore

October 2002

TECHNICAL REPORT
CMU/SEI-2002-TR-036
ESC-TR-2002-036

\)^? I & I

Carnegie Mellon
Software Engineering Institute
Pittsburgh, PA 15213-3890

Trustworthy Refinement
Through Intrusion-Aware
Design

CMU/SEI-2002-TR-036
ESC-TR-2002-036

Robert J. Ellison
Andrew P. Moore

October 2002

Networked Systems Survivability Program

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731 -2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2002 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-0O-C-0003 with Carnegie Mel-
lon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy-
right license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Executive Summary v

Abstract .ix

1 Introduction 1
1.1 Background 2

1.2 Related Work 4

1.3 Structure of this Report 5

2 IAD Model Overview 7
2.1 Model Structure 7

2.2 Sources and Effects of Change 10

3 Architectural Strategy Sector 13
3.1 Approach 13

3.2 Supporting Techniques 16

4 Architectural Instantiation Sector 21
4.1 Approach 21

4.2 Supporting Techniques 23

5 Environmental Analysis Sector 27
5.1 Approach 27

5.2 Supporting Techniques 29

6 IAD Model Context 37
6.1 Model Instantiation 37

6.2 Model Incorporation 39

7 Conclusion 41

Bibliography 43

CMU/SEI-2002-TR-036

CMU/SEI-2002-TR-036

List of Figures

Figure 1: TRIAD Overview 8

Figure 2: Data Relationships 10

Figure 3: Architectural Strategy Formulation 13

Figure 4: Top-Down Requirements Tracing from Mission Objectives 15

Figure 5: Example Mapping Tables 15

Figure 6: Architectural Instantiation 21

Figure 7: Bottom-Up Requirements Tracing from Survivability Primitives 22

Figure 8: Threat Environment Analysis 27

Figure 9: A Feedback Loop for Controlling Vulnerability 31

Figure 10: The Effects of Vulnerability Publication on Internet Vulnerability 32

Figure 11: eBusiness Threat Analysis 33

Figure 12: Attack Tree Representation 34

Figure 13: High-Level eBusiness Attack Tree 35

Figure 14: Example Model Instantiation 38

Figure 15: TRIAD in SDM Process (1) as Mini-Spiral or (2) Through Integration....40

CMU/SEI-2002-TR-036

iv CMU/SEI-2002-TR-036

Executive Summary

High confidence in a system's survivability requires an accurate understanding of the sys-
tem's threat environment and the impact of that environment on system operations. Unfortu-
nately, existing development methods for secure and survivable information systems often
have a patchwork approach in which the focus is on deciding which popular security compo-
nents to integrate rather than making a rational assessment of how to address the attacks that
are likely to compromise the overall mission. This preliminary report proposes an intrusion-
aware design (IAD) model called trustworthy refinement through intrusion-aware design
(TRIAD). TRIAD enables information system engineers to use known and hypothesized at-
tack patterns to iteratively improve and continually maintain system survivability, even as the
system and threat environment evolve over time. The model helps engineers understand
complex interactions among the information system, its mission, and its threat environment at
all levels of system architectural refinement. Information systems include any combination of
information technology and people's activities for using that technology to support opera-
tions, management, and decision-making. We focus primarily on large-scale, highly distrib-
uted, and inter-networked information systems, such as Internet-based applications.

TRIAD focuses on patterns of attack and strategies for surviving attack at an architectural
level to avoid getting overwhelmed by the details of individual component vulnerabilities or
piecemeal security solutions. We focus on malicious attacks, rather than non-malicious fail-
ures or accidents, because of the increasing sophistication, frequency, and severity of such
attacks and the inadequacy of existing approaches for dealing with them. Where available,
TRIAD promotes using available security and survivability building blocks to help prevent,
monitor, detect, and respond dynamically to likely intrusions. We consider both technological
and procedural building blocks, since individual technological solutions to specific surviv-
ability problems may be unavailable, too immature, or too costly for the organization build-
ing the system. TRIAD facilitates planning for the inevitable change to the threat and opera-
tional environment and helps trace the effects of change back to the survivability
requirements and architecture.

Survivable systems development is a domain in which the optimal refinement strategy is very
unclear during the early stages of system design, particularly where unbounded, network-
based systems are involved. Much experimentation and analysis is needed before a solution
can be found with an acceptably small degree of residual risk of mission failure. We thus
adopt the structure and philosophy of Boehm's spiral model as the basis for TRIAD. Each
iteration of TRIAD gradually refines the system architecture based on the whiteboard proto-
typing, risk analysis, and risk mitigation of any previous iteration. This iteration permits ad-

CMU/SEI-2002-TR-036 v

justments and corrections to be made to the requirements, architecture, or resulting risks

based on new experience and evidence.

The spiral structure of TRIAD proceeds through three sectors:

(I) Architectural Strategy - This sector derives justifiable system survivability requirements
and high-level conceptual architecture from the need to ensure mission success despite pene-
trations and compromises.

(II) Architectural Instantiation - This sector refines the technical architecture within the con-
straints set by the conceptual architecture by identifying and integrating the critical technical
building blocks.

(III) Environmental Analysis - This sector represents the threat environment and analyzes its
impact on system operation, including the system's ability to carry out its mission success-
fully.

Whereas Sector I activities proceed primarily top-down from the overall mission, Sector II
activities proceed primarily bottom-up by identifying survivability primitives to instantiate

the conceptual architecture. The combination of the conceptual architecture, produced in Sec-
tor I, and the technical architecture, produced in Sector II, constitute the system's survivabil-
ity architecture. Sector III activities ensure that the threat environment is considered consis-
tently through all iterations of architectural refinement. The refinement and analysis on which
TRIAD is based uses generic, reusable information that should make the overall process af-
fordable and efficient. This report illustrates a detailed instantiation of TRIAD that shows
how one might initiate the process, followed by iteration through the sector activities, and
completing when an acceptable degree of residual risk is determined. A similar illustrative
model could be developed for enhancing an already existing architecture into one with im-

proved survivability properties.

TRIAD does not deal specifically with many issues required of a comprehensive system de-
velopment life cycle. Developers will need to resolve these issues to incorporate TRIAD into
their system development and maintenance process. We believe that mission-related surviv-
ability requirements must be used to determine the overall shape of the architecture and must,
therefore, be the focus of the initial iterations of the design process. Functions or properties
required or desired that do not contribute to the mission must fit within the parameters de-
fined by the survivability architecture and must not significantly lower the confidence that the
system owners have in that architecture. This report outlines two approaches for incorporat-
ing TRIAD into a comprehensive system development life cycle, as a separate up-front mini-
spiral or by more fully integrating design activities into the life-cycle process. A detailed ap-
proach of how to do this depends largely on the details of the system problem domain and the

development environment, and is beyond the scope of this report.

Although the model described in this report presents only a broad-brush sketch of IAD activi-
ties, it provides a starting point for the further refinement, experimentation, and validation of

Vj CMU/SEI-2002-TR-036

an approach to exploit knowledge of intruder behavior to improve system architecture design
and operations. In the near term, we plan to continue to explore the viability of and refine
TRIAD through its application to the focused analysis of very specific problem situations.
Each example will involve the identification of a specific problem situation, a TRIAD analy-
sis and mitigation ofthat situation, and a characterization of the improvement gained through
the analysis and mitigation. By focusing on specific problems in a diverse set of narrow do-
mains, we expect to get quick feedback on the efficacy, flexibility, and scalability of the
model and insights into how to improve it.

Later work will involve a full-scale application of TRIAD to demonstrate its scalability to
more complex problems. TRIAD targets systems where there should be tighter integration
between the security and system architectures. TRIAD demonstrations could target

• a new system in the early phases of development

• an existing system where there are significant survivability reengineering issues

• an ongoing development where TRIAD could document and analyze the tradeoffs be-
tween the system and security architectures

Demonstrations will require assembling TRIAD activities and structures into a working sys-
tem development life-cycle model appropriate to the application domain and development
environment. In addition to refining TRIAD based on the full-scale application, we plan to
develop a tutorial for its use, with relevant examples, and initiate transition of the technology
to an interested organization. Documentation of these TRIAD case studies and a detailed set
of guidelines for TRIAD'S application in varied settings should help make a compelling case
for the model's use and transition. Ultimately, with evidence of its efficacy, we expect that
TRIAD will be integrated with more comprehensive life-cycle models for the development
and maintenance of high-confidence systems.

CMU/SEI-2002-TR-036 vii

vjjj CMU/SEI-2002-TR-036

Abstract

High confidence in a system's survivability requires an accurate understanding of the sys-
tem's threat environment and the impact ofthat environment on system operations. Unfortu-
nately, existing development methods for secure and survivable information systems often
have a patchwork approach in which the focus is on deciding which popular security compo-
nents to integrate rather than making a rational assessment of how to address the attacks that
are likely to compromise the overall mission. This report proposes an intrusion-aware design
model called trustworthy refinement through intrusion-aware design (TRIAD). TRIAD en-
ables information system engineers to use known and hypothesized attack patterns to itera-
tively improve and continually maintain system survivability, even as the system and threat
environment evolve over time.

CMU/SEI-2002-TR-036 ix

CMU/SEI-2002-TR-036

1 Introduction

High confidence in a system's survivability requires an accurate understanding of the sys-
tem's threat environment and the impact ofthat environment on system operations. Unfortu-
nately, existing development methods for secure and survivable information systems often
pursue a patchwork approach, deciding which popular security components to integrate,
rather than a rational assessment of how to address the attacks that are likely to compromise
the overall mission. Reductionist techniques that delve into low-level design and implementa-
tion while losing sight of the overall environment are doomed to failure. This preliminary
report proposes an intrusion-aware design (IAD) model called trustworthy refinement
through intrusion-aware design (TRIAD). TRIAD enables information system engineers to
use known and hypothesized attack patterns to iteratively improve and continually maintain
system survivability, even as the system and threat environment evolve over time.

TRIAD helps engineers understand complex interactions among the information system, its
mission, and its threat environment at all levels of system architectural refinement. Informa-
tion systems include any combination of information technology and people's activities using
that technology to support operations, management, and decision-making. We focus primarily
on large-scale, highly distributed, and inter-networked information systems, such as Internet-
based applications.1 Modern computer/network-based information systems typically cross
organizational boundaries and have no central administration and no unified security policy.
One may not control, or even know the number and nature of, nodes connected to unbounded
Internet-based information systems. The distinction between insider and outsider may be dy-
namic in that a partner for one activity may be a competitor or adversary for another.

Society is becoming increasingly vulnerable to high-impact threats to complex, unbounded
systems. TRIAD focuses on patterns of attack and strategies for surviving attack at an archi-
tectural level to avoid getting overwhelmed by the details of individual component vulner-
abilities or piecemeal security solutions. We focus on malicious attacks, rather than non-
malicious failures or accidents, because of the increasing sophistication, frequency, and se-
verity of such attacks and the inadequacy of existing approaches for dealing with them. We
focus on attacks that are likely with respect to the system of interest, rather than on all attacks
that are theoretically possible, to ensure cost efficiency and relevancy of TRIAD application
and the solutions that it promotes. Where available, the model promotes using available secu-

1 Henceforth, unless otherwise indicated, our use of the term "system" specifically refers to such a
large-scale, highly distributed, inter-networked information system, which includes both informa-
tion technology and its operational context in combination.

CMU/SEI-2002-TR-036

rity and survivability building blocks to help prevent, monitor, detect, and respond dynami-
cally to likely intrusions. We consider both technological and procedural building blocks,
since individual technological solutions to specific survivability problems may be unavail-

able, too immature, or too costly for the organization building the system.

TRIAD facilitates planning for the inevitable change to the threat and operational environ-
ment and helps trace the effects of change back to the survivability requirements and archi-
tecture. In particular, we require traceability of the architectural solutions back to the intru-
sions that they are supposed to address. Traceability documentation is essential for system
modifications caused by changes in the organization's risk profile, the appearance of new
attack patterns, the availability of new technology supporting both functional and security
requirements, and changes in the underlying work processes that impact the vulnerability and

risk analysis.

This report uses a broad brush to sketch the primary elements, key relationships, and support-
ing techniques of TRIAD. The model does not represent the whole development process, but
only that part having to do with architectural refinement and only from the perspective of
survivability. In particular, we do not represent those parts of the process needed to refine
more general system function or to consider other quality attributes in addition to survivabil-
ity. Nevertheless, this model serves as a starting point for the further refinement, experimen-
tation, and validation of an approach to exploit knowledge of intruder behavior to improve

system architecture design and operations.

1.1 Background
Developers in many engineering disciplines rely on engineering failure data to improve their
designs. Imagine the result if bridge builders had ignored the lessons learned from the tor-
sional oscillations that caused the Tacoma Narrows Bridge to collapse. Or if ship builders had
ignored the lessons learned about inadequate lifeboat space and manning that allowed the
great loss of life when the Titanic sank. Engineering success requires that we also learn from
the less famous disasters. The aerospace community, for example, has institutionalized a
means for learning from air traffic accidents that has resulted in very low risk of death during
air travel, despite its inherent hazards. Successful architects design structures to survive
known faults in building materials, construction methods, and the environment.

Businesses and governments have historically been reluctant to disclose information about
security failures, i.e., intrusions, on their systems for fear of losing public confidence or for
fear that other attackers would exploit the same or similar vulnerabilities. However, increased
public interest and media coverage of the Internet's security problems have resulted in in-

CMU/SEI-2002-TR-036

creased publication of attack data in books, Internet newsgroups, and CERT® security adviso-
ries, for example. Unfortunately, information system developers are using information on
security failures, i.e., intrusions, in only a reactive way, to patch systems that they have al-
ready fielded, and even then in a very incomplete and inefficient manner [Arbaugh 00]. In-
formation systems being built and managed today are prone to the same or similar vulner-
abilities that have plagued them for years.

Exacerbating this problem is the increased dependence on extremely complex, inter-

networked systems. The complexity and openness of these systems to the general public in-
creases the exposure and vulnerability to malicious activity. The result is that increasingly
sophisticated attacks are exploiting exposed vulnerabilities at an alarming rate. As seen by
recent Internet worms and viruses released (e.g., Melissa, Love Letter, Code Red, Nimda),
attackers share tools and knowledge to amplify their capability [CERT 02]. Each attack
method builds off the knowledge, experience, and code of the previous attack method, which
ironically makes the attack (virus, worm, etc.) more survivable as a result. Increasingly so-
phisticated tools currently available permit relatively inexperienced individuals to execute
very sophisticated attacks.

In addition, we have seen such attacks escalate with the intensity of political conflicts, such
as the war in Kosovo, the tensions between the United States and China, and the conflict be-
tween India and Pakistan [Vatis 01]. While these attacks are often in the form of embarrass-
ing Web site defacements, attackers are starting to surreptitiously target the perceptions of
users, such as the attempts to modify the content of major news publications or company
press releases. We are seeing increasingly stealthy attacks that fly "under the radar" of exist-
ing intrusion detection systems (e.g., a single probe executed once per day). Attacks that fly
"over the radar" of intrusion detection systems, such as social engineering and physical at-
tacks, need to be taken as seriously as technological attacks [Anderson 01]. In general, at-
tacks can target a system's internal users and commercial off-the-shelf (COTS) components,
as well as external trusted systems and user communities. Attacks by individuals more so-
phisticated than the average recreational hacker (e.g., industrial spies and international cyber-
terrorists) are becoming more likely and more difficult to counter.

A solely reactive approach to building and maintaining system security and survivability is
doomed to failure, because of practical limits on shrinking the window of exposure of vul-
nerable systems [Arbaugh 00, Schneier 00a]. In fact, no amount of hardening can ensure that
intrusions on unbounded systems do not occur. Survivability is the capability of a system to
fulfill its mission by preserving essential services, even when systems are penetrated and
compromised. Survivability requires strategies to monitor, detect, and adapt to intrusions to
ensure mission success, as well as, to the extent possible, preventing intrusions in the first
place. Survivability properties typically emerge from the architectural interaction of system

CERT and CERT Coordination Center are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

CMU/SEI-2002-TR-036 ;

components, and therefore must be considered very early in the development process. Con-
sidering survivability too late usually results in a system architecture that "hard-codes" mis-
sion vulnerabilities, making it too difficult, too costly, or downright impossible to build sur-

vivable implementations of that architecture.

TRIAD is built on the premise that a much more proactive use of available attack information
is needed to build cost-effective systems that survive attack with high confidence. Building
affordable survivability architectures demands understanding the threat environment of the
system under construction so that effort is spent on the likely intrusions rather than all possi-
ble ones. Attacks may target people, processes, and physical structures, as well as the system
technology. Likewise, survivability strategies must allow procedural, physical, and techno-
logical remedies to mission vulnerabilities to ensure the viability and affordability of the

remedy.

Gaining confidence in a system's survivability requires showing that the system is adequately

resilient to likely patterns of attack. The dynamic nature of the intrusion environment de-
mands that TRIAD, and the analysis techniques on which it is based, help discover and hy-
pothesize about new sources and patterns of attack, in addition to known attacks by known
adversaries. Unfortunately, much of the available attack information is very detailed in terms
of software versions, enterprise-specific configurations, and attacker-specific scripts. Such
details have a relatively short life as the attackers create and revise their tools and methods.
However, the general patterns of attack are much less variable over time. Attack patterns de-
scribe general attack strategies, such as the various forms of denial-of-service attacks, and
can be structured so that they can be applied in a variety of contexts [Moore 01]. The CERT
Coordination Center's experience analyzing the survivability of real systems across industry
and government and collecting actual Internet-based attack data is leading to a more in-depth
understanding of attack patterns, trends, and countermeasures [Ellison 99, CERT 02].

1.2 Related Work
A few efforts across industry and government are pursuing research to improve development
methods for secure and survivable inter-networked systems of systems with a focus on the
threat environment. Neumann provides important insights into and an overview of supporting
mechanisms for the development of survivable system architectures [Neumann 00]. The In-
formation Assurance Technical Framework (IATF) provides extensive guidelines for choos-
ing security mechanisms to incorporate into potentially large-scale, mission-critical systems,
based on a high-level characterization of the threat and value of information protected [IATF
00]. Another paper outlines a secure system engineering methodology based on a more exten-
sive analysis of the threat environment, and is, therefore, somewhat more aligned with our
approach [Salter 98]. Work in the area of intrusion tolerance, which is primarily funded in the
United States by the Defense Advanced Research Projects Agency (DARPA) and in Europe
through project MAFTIA, generally is intrusion focused and tackles large-scale distributed

CMU/SEI-2002-TR-036

systems survivability, but the research has usually ignored non-technical attacks and coun-
termeasures [MAFTIA02].

While the above work contributes to developing a model for IAD, none of the efforts take
advantage of the full potential of exploiting available attack information for improving sys-
tem survivability. No one that we know of is looking in-depth at the problem of using attack
patterns and trends during system architecture refinement to maintain system security and
survivability, in a way that copes well with the transient nature of the threat environment. The
objective of our work is to address this problem, dealing directly with survivability mainte-
nance as the system mission, architecture, and threat environment change. A great range of
work in security risk analysis contributes to our effort, including the areas of adversary mod-
eling, attack specification, vulnerability/threat analysis, security-related taxonomies and data-
bases, impact analysis, and red teaming. Although the volume of work in this area precludes
recounting all of the efforts that might contribute to IAD, we talk more about the general les-
sons learned from this research in later sections of this report.

1.3 Structure of this Report
This report is organized according to the structure of TRIAD. Section 2 provides an overview
of the model structure containing three primary sectors of activities: Architectural Strategy,
Architectural Instantiation, and Environmental Analysis. A more detailed description of each
of these sectors, including a discussion of techniques that support the sector activities, is
given in Sections 3 through 5. Section 6 discusses the context for applying TRIAD both in
the small, through its instantiation to more specific IAD processes, and in the large, through
its incorporation in the larger system development life cycle. Finally, Section 7 summarizes
the report and the directions for future work.

CMU/SEI-2002-TR-036

CMU/SEI-2002-TR-036

2 IAD Model Overview

It is widely accepted that much of system architecting is creative in nature:

Architectural design processes are inherently eclectic and wide-ranging, going

abruptly from the intensely creative and individualistic to the more prescribed

and routine. While the processes may be eclectic, they can be organized. Of the
various organizing concepts, one of the most useful is stepwise progression or
"refinement" [Maier 00].

TRIAD was formulated around the central notion of refinement in architecting, which moti-
vated the 'R' in TRIAD. Maier goes on to note that the process of system architecting is best
"characterized as episodic, with episodes of abstraction reduction alternating with episodes of
reflection and purpose expansion" [Maier 00]. To reflect this episodic nature of system archi-
tecting, TRIAD adopts the structure and underlying philosophy of the spiral model of system
development [Boehm 88, Marmor-Squires 89].

The spiral model is intended for system and software development and enhancement in com-
plex domains with which the developers have little experience, domains where the best (or
even a good) direction for system refinement is highly uncertain. Such domains require iter-
ated refinement where each iteration gradually refines the system requirements, design, and
implementation based on the experience of any previous iteration. This iteration permits ad-
justments and corrections to be made in the directions chosen for system refinement based on
new evidence such as risk analysis, prototyping, and simulation. The original spiral model
proceeds through four quadrants, each quadrant making progress toward improved under-
standing and refined documentation of the system requirements, design, and/or implementa-
tion [Boehm 88]. Like the spiral model, TRIAD is equally applicable to the development of
new systems and the enhancement of existing systems.

2.1 Model Structure
Survivable systems development is certainly a domain in which the optimal refinement strat-
egy is very unclear during the early stages of system design, particularly where unbounded,
network-based systems are involved. Much experimentation and analysis is needed before a
solution can be found with an acceptably small degree of residual risk of mission failure. The
spiral structure of TRIAD, which is shown in Figure 1, proceeds through three sectors: (I)
Architectural Strategy, (II) Architectural Instantiation, and (III) Environmental Analysis. Al-
though the figure shows only the general structure of the model, a fully instantiated model

CMU/SEI-2002-TR-036 7

involves multiple iterations through these sectors. Consistent with the original spiral model,
each iteration gradually refines the system architecture based on the whiteboard prototyping,
risk analysis, and risk mitigation of any previous iteration. Progress starts in the middle of the

figure in Sector 1 and proceeds along the spiral, the angular dimension of which indicates
cumulative progress. An instantiation of the model involves multiple iterations through the
sectors, which permits adjustments and corrections to be made to the requirements, architec-
ture, or resulting risks based on new experience and evidence. Subsequent discussion de-
scribes the primary activities in each sector. Section 6 illustrates a fully instantiated model.

Conceptual
Architecture

I Architectural
Strategy

III Environmental
Analysis

II Architectural
Instantiation

Technical
Architecture

Residual
Risk

Figure 1: TRIAD Overview

The Architectural Strategy sector starts by elaborating the overarching mission of the system
under design. Activities in the sector derive justifiable system survivability requirements and
high-level conceptual architecture from the need to ensure mission success despite penetra-
tions and compromises. As shown, requirements are derived from a collection of survivability
strategies. A survivability strategy is a generic representation of an architectural approach to
prevent, monitor, detect, or adapt to some pattern of attack in a specific context. Example
strategies include redundancy, diversity, deception, separation, intrusion detection, recovery,

and personnel management.

Activities in the Architectural Instantiation sector refine the technical architecture within the
constraints set by the conceptual architecture by identifying and integrating the critical tech-
nical building blocks. Whereas Sector I activities proceeded primarily top-down from the
overall mission, this sector's activities proceed primarily bottom-up (or middle-up) by identi-
fying survivability primitives to instantiate the conceptual architecture. A survivability primi-
tive is a generic representation of an architectural building block that is useful in a specific

CMU/SEI-2002-TR-036

context to implement some survivability strategy. Example primitives for recovery include
restoration from backup and surveillance and apprehension of suspected intruders.

Activities in the Environmental Analysis sector represent the threat environment and analyze
its impact on system operation, including its ability to carry out its mission successfully. The
threat environment is derived from a collection of attack patterns. An attack pattern is a ge-
neric representation of a deliberate, malicious attack that commonly occurs in a specific ar-
chitectural context. An attack pattern can target people (e.g., social engineering attacks that
use a computer virus), the operation of the technology (e.g., distributed denial-of-service at-
tacks), or the context in which people do work (e.g., dumpster-diving attacks).

The distinction between the sectors may not always seem clear, and there is bound to be some
overlap, just as there was in the original spiral model. However, we have fairly concrete dis-
tinctions between each of the three sectors. The difference between Sector I and Sector II is
similar to the difference between requirements and specification. Requirements may describe
a general solution strategy, but leave open many design/implementation-level details; a speci-
fication makes many of the concrete decisions on how to proceed, often in terms of specific
components and connectors. The conceptual architecture, produced in Sector I, describes the
system function and structure at a level appropriate for the customer. The technical architec-
ture, produced in Sector n, describes the function and structure of the system at a level of
technical detail sufficient to actually build the system. Also Sector I typically refines the ar-
chitecture top-down from mission objectives, whereas Sector II typically instantiates an ar-
chitectural concept bottom-up (or middle-up) from available architectural primitives. Both
top-down refinement and bottom-up refinement are an essential part of the system develop-
ment process, and TRIAD supports them explicitly in each iteration. The combination of the
conceptual architecture and the technical architecture make up the system's survivability ar-
chitecture. Finally, Sector HI focuses on the analysis of threat and impact given the architec-
tural constraints specified in Sector II, whereas Sector I focuses on the description of re-
quirements to mitigate the resulting risk. Sector III activities ensure that the threat
environment is considered consistently through all iterations of architectural refinement.

The essential relationship of the data on which each sector is based is shown in Figure 2.
Survivability strategies to ensure mission success suggest the use of specific survivability
primitives. These primitives, in turn, have certain vulnerabilities within the context of a sys-
tem architecture that promotes certain attack patterns. Attack patterns, in turn, suggest the
adoption of other survivability strategies. Of course, this results in a never-ending cycle of
analysis. The challenge of the intrusion-aware designer is to converge gracefully to a set of
survivability strategies that address likely attack patterns in an affordable and effective man-
ner, each member of which is implemented as a set of survivability primitives.

CMU/SEI-2002-TR-036

2.2 Sources and Effects of Change
The three sectors of the model represent the three major points at which change can occur:

requirements, architecture, and threat environment. A change in requirements may occur
through an expansion of the system mission. For example, a military command and control
system must now also operate jointly with coalition forces. A change may also require con-
tracting the mission or modifying its fundamental nature. For example, an eBusiness focusing
on sales of high-end merchandise may transition to a strategy of high volume discounted
sales of lower-end merchandise because of various market pressures.

Survivability
Strategies

A

Survivability
Primitives

Attack
Patterns

Figure 2: Data Relationships

Changes in the system architecture may be procedural or technological in nature. A business
may decide to relax hiring practices in response to a highly competitive job market. A techno-
logical change may result when an eBusiness expands to physical sales of merchandise at
multiple distributed sites. This change would require online inventory management and a
level of trust in the workflows between the distributed sites.

Finally, a change in the threat environment may involve new types of attackers that need to
be considered, or old types of attackers using new methods. New types of attackers may
threaten an eBusiness when, for example, recent news reports publicize the eBusiness's deal-
ings with unpopular organizations, making its system operations more susceptible to "hactiv-
ist" attack. Attackers who were previously considered a threat might take on new relevance
when a new class of attack tools is increasingly used to penetrate corporate perimeters and

take control of intranet operations.

TRIAD emphasizes the interrelationships between each of the three sectors. Changes in mis-
sion objectives may lead directly to changes in system structure to support the modified ob-
jectives. Changes in system structure can, in turn, affect the threat environment, for example,
through increased exposure. Finally, a change in the threat environment may lead to modified
requirements to preserve survivability, and ultimately structural changes to support these re-
quirements. The documentation promoted by our approach promotes traceability between
sectors to support continued maintenance of system survivability even after the system is

fielded.

10 CMU/SEI-2002-TR-036

The next three sections of this report discuss the activities undertaken in each of the three
sectors in more detail. Each sector involves the production of a set of artifacts developed
using as input

• the generic survivability and attack information available—i.e., the survivability
strategies, survivability primitives, and attack patterns as shown in Figure 1

• the output of any previous sectors' artifacts as progress is made along the spiral
of Figure 1

The set of artifacts produced during the execution of any particular sector along the spiral
may only be partially complete. Nevertheless, the set represents the output at that stage of
progress and may be used in the activities of the next sector along the spiral. Progress contin-
ues until the set of artifacts produced for each sector is final and the level of residual risk de-
termined by the Environmental Analysis sector's activities is acceptable to the stakeholders
involved. The number of iterations of the spiral required for completion is application de-
pendent, but we typically expect convergence on an acceptable solution in two to four itera-
tions.

CMU/SEI-2002-TR-036 11

12 CMU/SEI-2002-TR-036

3 Architectural Strategy Sector

Any successful organization has an implicit or explicit mission that characterizes its primary
purpose as a set of high-level objectives. The primary goal of the Architectural Strategy sec-
tor (Sector I) is to derive system requirements and a high-level conceptual architecture that
promote the survivability of an organization's mission in the face of active attack. An organi-
zation's information technology, policies, procedures, personnel, and overall work context all
exist to support the mission. Survivability must be maintained even as an organization's ob-
jectives, structures, behaviors, or threat environment evolve over time, possibly in unex-
pected ways. This requires proactive change management strategies that help determine and,
when possible, contain the effects of change.

3.1 Approach
Figure 3 outlines the general structures for documenting the survivability requirements de-
rived from the overall organizational mission. Inputs include any generic survivability strate-
gies that help ameliorate the significant risks associated with the threat environment of the
technical architecture characterized by previous sector activities. The ultimate output of the
Architectural Strategy sector is the conceptual architecture describing the system features
needed to ensure that the mission is achieved given the threat environment characterized.

Survivability j Mission
Strategies \ j i

'

Technical . : Survivability Requirements Conceptual
Architecture

/\ / \
Threat \

Environment j Passive
Strategies

Active
Strategies

Figure 3: Architectural Strategy Formulation

Survivability strategies are broad approaches to ensuring the survivability of information sys-
tems and mitigating the threats to mission success. Experience with real attacks on systems

CMU/SEI-2002-TR-036 13

through the years emphasizes the need to consider the big picture, including both the tech-
nology and its operational environment, in order to develop strong and cost-effective solu-
tions [Anderson 01, Schneier 00b]. Survivability has three primary components: the detection
of, the prevention of, and the recovery/adaptation to an attack. Preventive techniques such as
authentication, authorization (access control), and encryption increase the resistance to at-
tacks and are typically passive. The system response to an attack in terms of recovery of ser-
vices or continued (possibly degraded) operations may be to change the system configuration
or security policy, for example, to strengthen authentication or tighten access control. The
responses in this context are active in the sense that the system must detect the attack and
then actively reconfigure system operations to ensure mission success in the presence of the

attack.

The distinction between passive and active strategies often partitions the architectural design
effort. It is not unusual for a large system to have a security architecture that concentrates on
the passive defenses. The security architecture encompasses support for user authentication
and authorization, encryption, and management of networks with firewalls or specialized se-
curity configurations for applications such as databases or Web servers. Passive security is
often connected with a physical architectural view. Often vulnerabilities are associated with
implementation or administrative errors, so that many aspects of passive security arise late in
the design cycle. The design of the security architecture can demand expertise in terms of
identifying covert channels, management of distributed security and authorization, and key
management for encryption. For large or complex systems, a security architect can be desig-
nated to design this segment of the overall architecture.

Active responses to an attack are typically the responsibility of the system architect rather
than the security architect. The overall objective for survivability is to continue to support the
mission. Survivability analysis identifies essential services, maps those services onto the sys-
tem architecture, and identifies the impact of attack scenarios on those services and hence on
the mission. The system architecture has to support continued service in the presence of at-
tacks through redundant or alternative services or to provide data recovery services so as to

restore full service following an attack.

The division of responsibility between the system and security architectures can be a source
of confusion. Attacks could target the directory services that maintain system-wide authenti-
cation and authorization services. So the security architecture also has to provide active re-
sponses in terms of recovery or continued operation. The architectural style chosen for the
system, such as using a central data store, affect the active responses and the options for the
security architecture. The selection and weights given to passive and active strategies, as well
as the selection of appropriate architectural styles, is a critical aspect of activities in the Ar-

chitectural Strategy sector.

14 CMU/SEI-2002-TR-036

Activities in the Architectural Strategy sector also maintain the traceability of the mission-
related requirements. As shown in Figure 4, mission objectives are traced through the mission
threats down to the survivability requirements, which include both the quality and the struc-
tural requirements of Figure 3. The threats addressed are those identified in the Environ-
mental Analysis sector. The Architectural Instantiation sector, described in the next section, is
responsible for tracing the survivability requirements through the survivability architecture
down to the individual component responsibilities. Since IAD is an iterative refinement proc-
ess, the mission threats and survivability architecture may be only partially defined on any
given iteration of the spiral. Therefore, the requirements definition and traces are incremen-
tally refined as well. The requirements tracing can be conveniently documented in tabular
format, as exemplified in Figure 5.

Mission Objectives

/ t.\ / making \

Mission Threats

/ ♦ \ / mapping \

Survivability Requirements
(Quality and Structural)

Figure 4: Top-Down Requirements Tracing from Mission Objectives

Gl U4 U5 CJ6

Tl.l.l.
Tl.1.2.
T1.1J. 'öU

V)
%
2
£
1-
C o
</>
w

E

Tl.2.1.
Tl.2.2. ViSaE
T1.2J. Z&r T2.1.1. V-&T
T2.1.2. -7&M.
T2.1J. 7C?JL.
T2.2.1. I$M
T2.2.2. yJ?£
T2.2.3. ^7<FA
T3.1.1. 7*5£ T3.1.2. Zt$f-
T3.2.1.
T3.2.2.
T3.2.3.
T3.2.4.

l
m
4-«

0)
E
2
3
O1

01
cc
3>
XI
(0 >
>
3

v>

T
1

1.

. T
X

1.

i

i. i.
Rl
R2 W raj
R3 K4
R4 <!i

^jj.
R5 ^ i&
R6

%
ä

R7

\
R8 /<
R9 4 ̂ RIO 1
Rll

w R12 T

Figure 5: Example Mapping Tables

CMU/SEI-2002-TR-036 15

3.2 Supporting Techniques

3.2.1 Requirements Traceability
Requirements traceability has long been used to help ensure that a system's design and im-
plementation conform to its requirements. However, perhaps even more important for our
purposes, requirements traceability is essential to managing changes in a way that maintains
an organization's survivability over time. In this broader context, requirements traceability
can be defined as "a characteristic of a system in which the requirements are clearly linked to
their sources (backward traceability) and to artifacts created during the system development
life cycle based on these requirements (forward traceability)" [Ramesh 97]. In this definition,
linkages are considered bidirectional. The Architectural Strategy sector is responsible for
backward traceability, whereas the Architectural Instantiation sector is responsible for for-

ward traceability, as we will explain in Section 4.

Traceability of requirements from an organization's mission helps determine a system's sur-
vivability dependencies. Studying the backward traceability of the requirements can help as-
sess the impact of changes to an organization's mission or threat environment. Studying the
forward traceability of the requirements can help assess the impact of changes to the system
architecture. Conventional wisdom in the requirements traceability community dictates that
traceability be maintained only for mission-critical requirements [Ramesh 98]. This wisdom
is exactly aligned with the mission focus of survivability, since the organizational mission
provides the starting point for TRIAD requirements tracing, as we will describe in the next

section.

In summary, requirements traceability helps

• demonstrate that mission-critical requirements are satisfied

• identify the source and justification for each requirement

• understand the impact of errors and failures on the system's ability to achieve its mission

• understand the impact of change due to the evolution of the organization's objectives,
structures, behaviors, or threat environment

Survivability requirements traceability requires a broader scope than typically adopted for
general requirements traceability because of the breadth of the threats (e.g., from social engi-
neering to technological compromise) and the countermeasures (e.g., from personnel, to pro-
cedural, to technological). Requirements must be consistently managed throughout the sys-
tem lifetime to support continual risk management so that new threats and system operations

do not lead to mission failure.

16 CMU/SEI-2002-TR-036

Usage Scenarios

Requirements may also usefully be described as a set of scenario descriptions in a way that
helps map them onto the system architecture [Jacobson 99, Bass 01]. Potts describes scenar-
ios as a sample execution of a system, the antithesis of specifications:

Whereas a specification describes behavior generally, a scenario exemplifies be-

havior by presenting specific, concrete episodes. Whereas it is possible to deduce
scenarios from a specification, it is possible only to induce a specification from a
collection of scenarios [Potts 95].

System requirements for both functional and non-functional requirements can be defined as
scenarios. A thread through the scenario literature involving obstacle analysis deals explicitly
with a negative view [Potts 95, van Lamsweerde 00]. Obstacle analysis identifies and ana-
lyzes obstacles to realizing usage scenarios. Intrusions, or attacks, can be viewed as an obsta-
cle to the security of a system. Negative scenarios are sometimes used during obstacle analy-
sis, but primarily only to show the reality of the obstacle [Potts 95, Weidenhaupt 98]. We
discuss techniques that support the documentation of intrusion scenarios in Section 5.

3.2.2 Survivability Strategies

As described earlier, generic survivability strategies provide a useful advanced starting point
for deriving system requirements from mission goals given a particular threat environment.
There are many sources across the security and survivability literature of potential strategies
for ensuring mission success. The RAND Corporation, for example, has published a method
for improving the survivability of systems based on categories of predefined survivability
vulnerabilities and techniques [Anderson 99]. Although RAND's method has not been ap-
plied extensively, the study surveyed a wide range of existing systems and research efforts on
security and survivability to derive vulnerability and technique categories. Examples include,
but are not limited to, redundancy, diversity, deception, identification and authentication, in-
trusion detection, recovery/adaptation, physical separation, logical separation, cryptographic
separation, temporal separation, and personnel management. These strategies may be imple-
mented manually (through human procedures), automatically (through technology), or
through a combination of the two. The survivability techniques identified provide a good start
at identifying strategies for building survivable systems that should be useful for IAD. Other
work on survivability architectures should also provide useful input to the IAD process
[Knight 00, Neumann 00].

3.2.3 Architectural Styles

The importance of architecture for survivability suggests the utility of defining architectural
styles that promote survivability [Shaw 96]. An architectural style is primarily characterized
by a set of components, a set of connectors, and a topological layout that determines runtime
relationships [Bass 98]. Progress in the area of defining architectural styles may be useful in

CMU/SEI-2002-TR-036 17

characterizing survivability strategies. A system's survivability, however, depends more on
the workflow-based interaction of its components than the topology of its architecture. Main-
taining the workflows that support the essential services is critical. In addition, the focus of
survivability on the enterprise mission makes survivability requirements, by definition,
highly application-dependent. Defining survivable architectural styles is difficult since those
styles would have to reflect the broad variety of possible enterprise missions.

There are a variety of styles associated with a runtime view for an architecture. Client/server,
shared data, and pipe and filter are examples of general styles. A shared data style could use a
central database or a distributed data store. A shared data style is not likely to use diversity as
a general survivability strategy. It often is too expensive and too complex to support database
systems from multiple vendors. But data redundancy either logically or geographically is a

widely used technique to support the survivability of a data service. Systems can support
multiple styles. For example, a system that supports a common operational picture (COP)
probably supports both a shared data and a pipe and filter style. The sensors for such a system
are radars. A pipe and filter style is often used to model the flow of sensor data to a central
processing point where the various data feeds can be correlated and tracks created. The vari-
ous tracks are eventually consolidated into a shared data store that can be accessed from mul-
tiple locations. Survivability of the pipe and filter style depends in part on the survivability of
the communication links and the sensors, but also on analysis algorithms that can provide
useful output when some sensors or communications links are unavailable. The survivability
of shared data depends on the redundancy of the data store and communication to the users of
the shared information. The nature of the mission is a critical piece of the analysis. For shared
financial data, it could be a critical survivability requirement to restore the contents and main-
tain data integrity after an attack. For a COP, the immediacy of information is critical, so the
survivability requirement is expressed in terms of the time required to restore the display to
represent the latest information available from the sensors.

System architectural styles also affect the passive strategies and hence the security architec-
ture. A shared data style could require access control in terms of the data fields, while a pipe
and filter style likely operates at a level of granularity of the dataflow that uses that pipe. A
central data store for use by a geographically dispersed organization could also require cen-
tral management of authorization and authentication information via a directory service.

Some active strategies should have a significant impact on the security architecture. For ex-
ample, dynamic changes in security policies, such as changes in authorization in a distributed
system, could require central management of user security information so that a change could
be propagated quickly to all affected systems. Some of the active options could lead to sig-

nificant administrative costs for the security architecture.

The security architect has many of the same kind of decisions as the system architect. A com-
plex system will have multiple workflows that pass through a boundary controller such as a

18 CMU/SEI-2002-TR-036

firewall. It may be better to separate services and, for example, associate a firewall with each
essential workflow implementing a distributed security architecture.

CMU/SEI-2002-TR-036 19

20 CMU/SEI-2002-TR-036

4 Architectural Instantiation Sector

The primary goal of the Architectural Instantiation sector (Sector II) is to develop a technical
architecture that supports the survivability requirements and instantiates the conceptual archi-
tecture identified in Sector I. To do this, the passive and active survivability strategies used in
Sector I are implemented in terms of available architectural primitives. These primitives may
be available either commercially or through government-sponsored research and develop-
ment programs. Sector II activities identify the responsibilities of individual components of
the technical architecture that help achieve the survivability requirements. Refining require-
ments may involve tradeoffs in terms of costs or complexity of administration that may sug-
gest refinements to the conceptual architecture. The conceptual and technical architectures
taken together constitute the survivability architecture.

4.1 Approach
Figure 6 outlines the general structures for refining the technical architecture. Inputs include
any survivability primitives that help instantiate the conceptual architecture, given the risks
identified by previous sector activities. The ultimate output of the Architectural Strategy sec-
tor is the technical architecture describing the system technology and interconnections needed
to implement the survivability requirements. Whereas Sector I activities proceed primarily
top-down from the overall mission, this sector's activities proceed primarily bottom-up (or
middle-up) by identifying survivability primitives to instantiate the conceptual architecture.

Survivability
Primitives

Conceptual
Architecture

Survivability Requirements

Component Responsibilities Technical
Architecture

Threat
Environment Intranet

Components
Perimeter

Components
Extranet

Components

Figure 6: Architectural Instantiation

CMU/SEI-2002-TR-036 21

Critical areas of consideration include
• the intranet, which includes the organization's databases, applications, servers, worksta-

tions, internal networks, and procedures for their use

• the perimeter, which includes firewalls, gateways, and physical mechanisms that protect
the organization's intranet assets from external access

• the extranet, which includes any networks outside the perimeter that must be relied on to
achieve the organization's mission

Sector activities must maintain the traceability of the survivability requirements through the
survivability architecture to the responsibilities of the survivability primitives, as shown in
Figure 7. When combined with the Sector I requirements traces, the transitivity of the map-
ping relation ensures the traceability of the mission objectives to the component responsibili-
ties. This traceability helps determine the impact of any changes to the system mission, threat

environment, or architecture on the overall system survivability. Mapping tables can help to

support this traceability, as described previously.

Survivability Requirements
(Quality and Structural)

I nupptng I

vivability Architec

I ♦ I I mapping I

Survivability Architecture

Component Responsibilities

Figure 7: Bottom-Up Requirements Tracing from Survivability Primitives

Following are some additional activities that may need to be carried out in this sector. Ex-
perience applying TRIAD to real applications will help both the researcher and eventual user

understand these activities in more depth.

• Map passive and active strategies into the architecture.

- Authentication and authorization can be centrally managed by a portal or can be the
responsibility of each application.

- Threats that exploit content, such as viruses, are countered by application-level moni-
tors.

- Application-level transactions support recovery from failures in communications.
- There is a central boundary controller or an individual boundary controller for critical

hosts or workflows.
• Match primitives with the system architectural style: data centered, pipe and filter.

- Use a data field access control model for data-centered style.
- Use central data recovery mechanisms for data-centered design.

22 CMU/SEI-2002-TR-036

• Identify architecture mechanisms that support proposed architectural strategies.

- Use asynchronous messaging for communications among distributed processors.

• Incorporate threat analysis into the selection of architectural primitives. Demonstrate how
primitives mitigate known risks; i.e., demonstrate that instantiation satisfies the theory of
operation specified in the strategies.

• Refine requirements to reflect available commercial solutions.

- Refine authorization and authentication requirements—portals, directory services,
access control associated with databases.

- Refine requirements and specify and develop preliminary architecture for boundary
controllers—firewalls.

- Identify architectural patterns: filters, proxy, roles, directory, wrapper, sandbox.

• Identify tradeoffs—e.g., administration costs, COTS software integration, ease of use for
user and/or administrator, modifiability. COTS security tools currently have limited in-
teroperability.

• Refine requirements for, specify, and develop preliminary architecture for system-wide
administration. Centralized management for authentication and authorization could re-
quire directory services.

4.2 Supporting Techniques
At the architectural instantiation level, developers need to identify a particular means to real-
ize the survivability strategies. We realize survivability strategies via survivability primitives,
similar to the way that attribute primitives support achieving quality attributes in an architec-
ture as described by Len Bass et al. [Bass 01]. There have been many listings of primitives
for ensuring system security through the years. Two recent works by Anderson and
Ramachandran are particularly noteworthy, the latter of which describes useful primitives in
the context of architectural design [Anderson 01, Ramachandran 02]. The IATF, described
earlier, also presents many security and survivability primitives graduated according to
strength of protection against malicious attack. Depending on the threat level expected and
properties required of the application domain, the framework recommends particular primi-
tives along with the Common Criteria assurances for the system as a whole.

4.2.1 Quality Attribute Primitives
A widely held premise of the software architecture community is that architecture determines
quality attributes such as performance, reliability, and modifiability. The SEI is currently
studying the relationship between software architecture and quality attributes [Bass 00]. That
work addresses several questions:

• Why are architecture and quality attribute behavior so intrinsically related?

• What key architectural decisions affect specific quality attributes?

• How do architectural decisions serve as focal points for tradeoffs between several quality
attributes?

CMU/SEI-2002-TR-036 23

The primary objective of the work is to systematically codify the relationship between archi-

tecture and quality attributes so as to achieve the following benefits:

• A greatly enhanced design process—both generation and analysis. During design genera-
tion, a designer could reuse existing analyses and determine tradeoffs explicitly rather
than in an ad hoc basis. Experienced designers do this intuitively but even they would
benefit from codified experience. For example, during analysis, designers could recog-
nize a codified structure and know its impact on quality attributes.

• A method for manually or dynamically reconfiguring architectures to provide specified
levels of a quality attribute. Understanding the impact of quality attributes on architec-
tural mechanisms will enable designers to replace one set of mechanisms for another
when necessary.

• The potential for third-party certification of components and component frameworks.
Once the relationship between architecture and quality attributes is codified, it is possible
to construct a testing protocol that will enable third party certification.

Bass characterizes the relationship between architecture and quality attributes using general

scenarios and general mechanisms. General scenarios characterize quality attribute require-

ments in terms of a stimulus and a response measure. For example,

• A modifiability general scenario is spurred by changes arriving and results in their
propagation through the system specification and implementation. Modifiability general
scenarios reflect the various classes of change possible.

• A performance general scenario is spurred by events arriving and results in a response to
the event with some latency. Performance general scenarios reflect the various classes of
performance response required.

Bass proposes that a collection of such system-independent scenarios can serve to completely
characterize a quality attribute requirement. Furthermore, general mechanisms exist for each
quality attribute that can serve as primitives for architecting systems to satisfy attribute re-

quirements. For example,

• Encapsulation is a general mechanism intended to primarily improve modifiability by
limiting the ripple effect of changes.

• Replication is a mechanism intended to improve performance by reducing response time
through locality or improving reliability by providing redundant copies of function or
data.

The vision promulgated is that "for a given mechanism we can divide the general scenarios
into those that the mechanism is intended to achieve and those that the mechanism impacts as
a side effect. The analysis for the intended general scenarios explains how the mechanism
achieves its result with respect to that general scenario. The analysis for the other general
scenarios describes how to refine the general scenario in light of the knowledge provided by
the mechanism. This refinement reveals side effects the mechanism has on other general sce-
narios" [Bass 00]. A codification of this information would be a useful resource for an archi-
tect designing a system to meet its required quality attributes. In particular, specializations of
general scenarios, called specific scenarios, describe system-dependent quality attribute re-

24 CMU/SEI-2002-TR-036

quirements. Likewise, specializations of general mechanisms, called specific mechanisms, are
the actual components used to design a system.

The validation of this approach is ongoing [Liu 01]. Nevertheless, the notion that mecha-
nisms can serve as architectural design primitives for achieving a quality attribute has clear
relevance to the design of survivable systems. A survivability general scenario is spurred by
attacks perpetrated and results in resistance, recognition, and recovery so as to continue es-
sential services. Survivability general scenarios reflect the various classes of requirements to
resist, recognize, and recover from attacks. Instantiated attack patterns represent specific sce-
narios. We can form intrusions that may compromise system survivability by stringing to-
gether coherent, specific scenarios. The architecture refinement process that we define intro-
duces survivability primitives into the architecture iteratively, to address attacks that target
different elements and that require increasing degrees of attacker sophistication. Just as with
other quality attributes, these mechanisms serve to satisfy survivability scenarios, which
characterize survivability.

4.2.2 Architectural Views

Traditionally, architectural views document the expected usage of the system. While Sector I
describes the general theory of operations for the system with respect to the identified threat
scenarios, Sector II documents the technological implementation that supports those opera-
tions. Two example views are the component and connector view and the architectural re-
source view [Clements 02]:

• A component and connector view concentrates on the runtime behavior of the system.
Components in this view include servers, clients, communication links, processes, and
data stores. A component and connector view also has associated styles such as client
server, central data store, or pipe and filter, which impact the choice and implementation
of survivability strategies. A runtime view documents the normal behavior of the system
for the essential services. Such a view can also be used to document intruder behavior
and the roles of components such as applications, firewalls, and portals in the response to
an attack. The runtime view also documents data flow, which can assist in data recovery
after an attack.

• An architectural resource view maps the components and connectors onto hardware. The
resource view can be used to map the workflow associated with an essential mission ser-
vice onto the physical components. This mapping now supports vulnerability and risk
analysis. For example, a vulnerability associated with a service could affect the other ser-
vices collocated on a server. The security policies and operating environment associated
with a physical resource are also critical to the analysis.

CMU/SEI-2002-TR-036 25

26 CMU/SEI-2002-TR-036

5 Environmental Analysis Sector

The primary objective of the Environmental Analysis sector (Sector III) is to assess at any
stage of architectural refinement the impact of a potentially evolving threat environment on
the system and its overall mission as described. A broad, but not uncommon, view of threat
includes the potential harmful results due to malicious attack, user errors/lapses, technologi-
cal faults, and natural disasters. Our current efforts limit the scope of the analysis in the Envi-
ronmental Analysis sector to malicious attack, since threats due to unintentional acts, faults,
or accidents are random events that can be analyzed with existing dependability and fault tol-
erance techniques. Malicious attacks, however, often involve the worst possible set of con-
trived inputs or actions delivered at the most inopportune time, resulting in mission failure.

5.1 Approach
Figure 8 outlines the general structures for representing and analyzing the threat environment
in TRIAD. Inputs include any generic reusable attack patterns and any architectural descrip-
tions from progress in previous sectors. The ultimate output of the Environmental Analysis
sector, an assessment of residual risk, is derived by looking at the threat environment from
three perspectives: threat dynamics, intrusions, and individual attacks.

Attack
Patterns

Threat Dynamics

Conceptual
Architecture

Intrusions Residual
Risk

Technical
Architecture People-

based
Attacks

Technology-
based

Attacks

Context-
based

Attacks

Figure 8: Threat Environment Analysis

Threat dynamics defines a holistic view of the threat environment. The objective is to provide
an overview of the general influences that the threat environment can have on the ability of

CMU/SEI-2002-TR-036 27

the system to fulfill its mission. This big picture view permits analyzing dynamically the ef-

fects of

• changes in attacker activity

• system operational responses to attacker activity

• changes in system operations or architecture

• the availability of new data that characterizes perceived threats in a new light

The effects of primary concern are those that compromise the system's ability to achieve its

mission.

Threat dynamics is based on a field of study called system dynamics, which has been used
extensively to model the structure and dynamics of complex human-based systems [Sterman
00]. While system dynamics is widely applicable, it is most useful in systems that use derived
information to exert feedback control over its resources. Such feedback control is a critical
technique for building survivable information systems. Active defense strategies monitor at-
tack activity and respond through a variety of recovery and adaptation techniques to ensure
mission success. Thus, survivable systems control their information resources based partly on
feedback from the attack-monitoring activity. System dynamics helps represent and analyze
such feedback control but has generally not assumed the presence of hostile agents. Threat
dynamics extends, or interprets, system dynamics to include explicitly hostile actions and the
system operational response to such actions. Threat dynamics thus models the structure and
dynamics of complex, human-based systems, of which the relationship between the Internet-
based attacker community and Internet-based information systems is a specific example.

Elaborating relevant intrusions and attacks permits a more detailed analysis. We define an
intrusion as a sequence of more primitive attacks that leads to a specific compromise of the
system's mission. An attack may or may not be completely successful, but it always changes
the state of the system in some way. An intrusion, on the other hand, always leads to a spe-
cific mission compromise through the execution of the sequence of at least partially success-
ful attacks. Related intrusions can be conveniently organized into attack trees where the root
of the tree describes the mission compromise to which the intrusions contribute [Schneier

00b].

Individual attacks can be broadly classified as to whether they are people-based, technology-

based, or context-based. These attack classes, respectively, target

• people's wants, needs, capabilities, or perceptions. Examples include social engineering,
semantic attacks, extortion, and physical harm. Such attacks can exploit greed, fear, or
gullibility; corrupt morals; or incapacitate essential personnel.

• computing and networking technology. Examples include

- network-based attacks: attacks on communication infrastructure and supporting ser-
vices

28 CMU/SEI-2002-TR-036

- application-based attacks: attacks on the architecture component applications such as
a Web server, email services, or supporting application infrastructure

- data-centered attacks: attacks on the data stream or content presented by transactions.
Such attack patterns can exploit or corrupt data and services or disrupt or deny essen-
tial services.

the context in which people perform their jobs. Examples include attacks on work sup-
port, customer demand, the value of corporate stocks, or legal constraints under which
people and corporations work. Such attacks can exploit or deny critical resources or dam-
age corporate market, capability, or assets.

The approach outlined above manages the complexity of the survivability risk analysis prob-
lem by focusing only on threats that can compromise the mission and only on vulnerabilities
at a gross architectural level. The holistic nature of the threat dynamics starting point helps to
ensure that all potential threat and solution areas are considered down to an architectural level
of analysis. Threat dynamics provides a means for analyzing the effects of observed trends in
attacker behavior. Linkages between the threats and the risk mitigators are preserved through
the requirements traceability performed in the Architectural Strategy sector. Although, as we
noted earlier, good incident and vulnerability data is increasingly becoming available, there
are still large gaps in our understanding of intruder behavior. Our methods benefit from the
availability of such data where it exists, but do not depend on it in order to provide useful
insights into the impact of the threat environment on system operations. Threat dynamics
analysis, and its system dynamics basis, can be performed in a qualitative, a quantitative, or
combined manner [Wolstenholme 90, Coyle 00].

5.2 Supporting Techniques

5.2.1 Security Risk Analysis
Security risk analysis is an established field of study that involves the analysis of the threats
to, and vulnerabilities of, a system and their potential impact on the system's mission. The
three primary elements of risk can be defined as follows [DoD 99]:

1. threat: any circumstance or event with the potential to cause harm to a system

2. vulnerability: a system characteristic that could be exploited by a threat to harm a system

3. impact: the extent of harm to a system that results from a threat's exploitation of a sys-
tem vulnerability

Risk is formally defined as "a combination of the likelihood that a threat will occur, the like-
lihood that a threat occurrence will result in an adverse impact, and the severity of the result-
ing impact" [DITSCAP 99].

CMU/SEI-2002-TR-036 29

For our purposes, then, a malicious threat can be viewed as any activity that exploits a vul-

nerability in a system and results in a negative impact on mission success." TRIAD involves
survivability risk mitigation at an architectural level, and the Environmental Analysis sector
involves survivability risk analysis in support of the mitigation. We do not "reinvent" security
risk analysis, but leverage existing analysis techniques as appropriate. In the longer term, we
hope to improve the accuracy and speed of risk analysis techniques by documenting com-

monly recurring attack patterns in a generic and reusable form.

Experience over the years in security risk analysis suggests a number of pitfalls to avoid [Soo

HooOO].
• Complexity. Techniques often require explicitly considering all threats and vulnerabilities

from the most common to the most obscure, without some screening with regard to like-
lihood or impact. The resulting complexity tends to overwhelm the analysis.

• Incompleteness. Techniques often ignore key aspects of the risk management problem or
make incorrect assumptions about the problem domain. This may, for example, result in
technological threats or solutions being emphasized over procedural ones.

• Data unavailability. Techniques often require obtaining precise, quantitative data on like-
lihood of threats and severity of impact. In the real world, such data continues to be in-
consistently collected and reported, and highly uncertain even when it is. Using highly
uncertain "estimates" in places where precise data is required often leads to obviously
faulty results or, even worse, to very misleading, but plausible, nonsense.

• Threat/countermeasure decoupling. Techniques of managing security risk through the use
of security technology best practices tend to decouple the countermeasures with the risk
they are supposed to reduce. This lack of traceability makes it difficult to accurately as-
sess the actual residual risk resulting from the use of those practices.

• Static analysis. Techniques generally deal only with the current threat environment with
little regard to managing the system under changing threats. Increasingly rapid changes
in the threat environment, which is characteristic of modern Internet-based systems, de-
mand techniques that can be applied as part of an evolutionary design and maintenance
life cycle.

There are, of course, no easy solutions to these problems. Early research in security risk
analysis generally promoted comprehensive solutions that became overly complex. More re-
cent approaches simplified the methods at the expense of completeness [Soo Hoo 00]. While
we make no claims to having solved these problems, we believe our approach to threat analy-
sis takes a balanced approach that makes inroads to managing the risk analysis problem from

the survivability perspective.

2 Henceforth, we refer to "malicious threat" simply as "threat," since this is our primary focus. We
specifically refer to "non-malicious threats" where that distinction is needed.

30 CMU/SEI-2002-TR-036

5.2.2 System Dynamics

System dynamics is one model that can help describe and enable understanding of the impact
of an evolving threat environment on the operation of a system. The originator, Jay Forrester,
developed system dynamics to show how a model of the structure of a human activity system
and the policies used to control it could be used to deepen our understanding of the operation
and behavior ofthat system [Forrester 61]. System dynamics has been used extensively since
then as a general modeling tool to enable better understanding of the structure and dynamics
of complex human-based systems, particularly in the area of business strategy and public pol-
icy [Sterman 00]. Preliminary literature searches have yielded very little work that applies
system dynamics to study the effectiveness of information technology. One of the few works
in this area describes an approach using system dynamics to study the impact of introducing a
management information system on an organization's business objectives [Wolstenholme 93].
We are aware of no work using system dynamics to study the threat environment or its im-
pact on system operations.

Nevertheless, system dynamics does appear to help with the documentation and analysis of
the threat environment, the area that we call threat dynamics. The simplest form of qualitative
problem description and analysis in system dynamics is the influence diagram, which is
based on feedback loops. Figure 9 illustrates a feedback loop that describes an aspect of the
behavior to control the vulnerability of Internet-based systems [Arbaugh 00]. Starting at the
"effectiveness of vulnerability exploit" element at the lower left-hand side of the figure, we
see that effectiveness positively influences the rate of publication about the vulnerability, in
the sense that an increase in effectiveness leads to an increase in publication (perhaps due to
increased media attention) with all other things being equal. Likewise, increased publication
leads to increased incentive to fix, and the ultimate availability of relevant patches. This leads
to patching of systems, which in turn reduces the effectiveness of the vulnerability exploit (all
other things being equal). The delay in patching, signified by the "D" along the arrow on the
right side of the figure, is a trend that has been described as a major reason for heavy Inter-
net-based attack activity, and the general vulnerability of the Internet. Nevertheless, the over-
all feedback loop described is a balancing one (indicated by the negative loop symbol in the
center), in that patching generally helps to control overall Internet vulnerability.

trends show major
vendor incentive j^ vendor fix delays; primary reason

to develop fix available for attack activity

vulnerability
publication rate o D

effectiveness of ^ vulnerable
vulnerability exploit systems patched

Figure 9: A Feedback Loop for Controlling Vulnerability

CMU/SEI-2002-TR-036 31

System dynamics influence diagrams can be composed as illustrated in Figure 10. The right
side of the figure shows the influence diagram described above. The left side shows a feed-
back loop that describes an effect of the vulnerability publication rate on the publication of
exploit tools and, ultimately, on the attacker exploit of the vulnerability. This is an example of
a positively reinforcing feedback loop as indicated by the positive loop symbol in the center
of the feedback loop. This figure illustrates a great debate ongoing in the Internet community
as to whether publishing vulnerability data helps or hinders the overall security of the Inter-
net. Recent analysis indicates that delays in patching are the primary cause of Internet vulner-
ability, while the publication of vulnerability data is a secondary driving force [Arbaugh 00].
The diagram does not, of course, help resolve the debate since it is strictly qualitative in na-

ture.

publication of + D attacker awareness
exploit tools

attacker awareness
of exploit tools

of vulnerability

O
+ attacker exploit

of vulnerability

vulnerability
publication rate

vendor incentive
to develop fix

o
effectiveness of

vulnerability exploit

+ vendor fix
available

D

vulnerable
systems patched

is exploit # of systems
popular vulnerable

Figure 10: The Effects of Vulnerability Publication on Internet Vulnerability

Figure 11 presents an example of the use of system dynamics to characterize the impact of
recent trends in the threat environment on an eBusiness's recent decline in profits, despite an
attempt to use more stringent technological security controls to curb high customer repudia-
tion rates. The analysis indicates that while increased security might control fraudulent trans-
actions, it also drives customers away. This is a plausible scenario if, for example, the eBusi-
ness required digital signatures, for non-repudiation, on all transactions. Most customers will
go somewhere else before subscribing to the third-party certification of digital signatures that
would be required to do business with the company. In this case, therefore, the likely result
would be that the increases in profit due to lower rates of repudiation (arrow from repudiation
rate to profit, bottom-left) would be overtaken by decreases in profit due to loss of customers

(arrow from customer loss rate to profit, lower left side).

32 CMU/SEI-2002-TR-036

difficulty accessing
needed services

rate of loss
of customers

profit 4—

Stringency of
security control

, ▲

Rate of
purchase -4

repudiation

D

Rate of the ft
of CC info

Criminal
possession of
stolen CC info

trends show
drastic increases

. in identity theft

average of 35%
ofCC transactions

are fraudulent

Rate of criminal +
use of stolen CC info

Re-sa lability
of merchandise

Figure 11: eBusiness Threat Analysis

5.2.3 Intrusion Scenarios

Intrusion scenarios involve interactions from the adversary's view, a negative view with re-
spect to system functionality, rather than a normal legitimate user's view, a positive view. We
define an intrusion scenario as a description of people and systems interacting in a way that
characterizes malicious behavior causing harm to an organization. A related technique called
abuse cases leverages the use case concept of the Unified Modeling Language™ (UML) for
information security [McDermott 99]. The most common view is that a use case is a general
specification of a set of related concrete usage scenarios. Abuse cases are to use cases as in-
trusion scenarios are to usage scenarios; i.e., they take an adversary's view rather than a
user's view. Therefore, we can view abuse cases as a standard way to describe a set of related
intrusion scenarios. UML explicitly identifies actors in a use case diagram and shows how
these actors interact with the system. Attackers correspond to the actors of an abuse case dia-
gram. Abuse cases describe these malicious actors in detail according to their resources,
skills, and objectives.

The large number of intrusions possible for any nontrivial system necessitates a scheme to
organize related intrusions. Attack trees provide such an organizational scheme [Salter 98,
Schneier 99, Schneier 00b]. They refine information about intrusions by identifying the com-
promise of enterprise security or survivability as the root of the tree. The ways that an at-
tacker can cause this compromise are refined incrementally as lower level nodes of the tree.
For example, suppose that a malicious competitor to an eBusiness may compromise that
business's ability to make a profit selling their product by

• hampering development of the product

• disrupting sales of the product

• undermining customer demand for the product

Each of these attack classes can be refined as a separate branch of the attack tree.

Unified Modeling Language is a trademark of Rational Software Corporation.

CMU/SEI-2002-TR-036 33

A system typically has a set, or forest, of attack trees that are relevant to its operation. The

root of each tree in a forest represents an event that could significantly harm the system's

mission. Each attack tree enumerates and elaborates the ways that an attacker could cause the

event to occur. Each path through an attack tree represents a unique intrusion on the enter-

prise. We decompose a node of an attack tree as one of the following:

• a set of attack subgoals that is represented as an AND decomposition. All of these goals

must be achieved for the attack to succeed.

• a set of attack subgoals that is represented as an OR decomposition. If any of these goals

is achieved, the attack succeeds.

We represent decompositions graphically as shown in Figure 12. The AND-decomposition

represents a goal G0 that can be achieved if the attacker achieves all of the goals Gi through

Gn. The OR-decomposition represents a goal G0 that can be achieved if the attacker achieves

any one of goals G] through G„. In practice, we often represent attack trees textually, since

the graphical representation can be awkward for nontrivial attack trees. Figure 13 shows the

high-level attack tree for the eBusiness described above.

AND-Decomposition: OR-Decomposition:

G0 G0

G, G2 G„ G: G2 Gn

A A
Go G, Gs G,

generates the (G3, G5, G6)
intrusion scenarios (G4, G5, G6)

Figure 12: Attack Tree Representation

34 CMU/SEI-2002-TR-036

Hamper development
of product

Compromise
eBusiness's
profitability

Disrupt sales
of product

Undermine customer
demand for product

Figure 13: High-Level eBusiness Attack Tree

Attack trees consist of any combination of AND- and OR-decompositions. We generate indi-
vidual intrusion scenarios from an attack tree by traversing the tree in a depth-first manner, an
example of which is shown in Figure 12. In general, leaf goals are added onto the end of in-
truder workflows as they are generated. OR-decompositions cause new workflows to be gen-
erated. AND-decompositions cause existing workflows to be extended. Intermediate nodes of
the attack tree do not appear in the intrusion scenarios, since they are elaborated by lower
level goals.

Attack trees allow the refinement of attacks to a level of detail chosen by the developer. They
exhibit the property of referential transparency as characterized by Prowell:

Referential transparency implies that the relevant lower level details of an entity
are abstracted rather than omitted in a particular system of higher level descrip-
tion, so that the higher level description contains everything needed to under-
stand the entity when placed in a larger context [Prowell 99].

This property permits the developer to explore certain attack paths in more depth than others,
while still allowing the developer to generate intruder workflows that make sense. In addi-
tion, refining the branches of the attack tree generates new leaves resulting in intruder work-
flows at the new lower level of abstraction. The notion of referential transparency is critical
to managing the complexity inherent in attack tree representations by constraining the re-
finement to an architectural level of abstraction.

CMU/SEI-2002-TR-036 35

36 CMU/SEI-2002-TR-036

6 IAD Model Context

This section describes how TRIAD can be applied in practice. Section 6.1 illustrates how to
instantiate the generic TRIAD model for use in a specific development environment by as-
sembling the sector activities and structures in an organized manner. Section 6.2 describes
how TRIAD can be used in the context of more comprehensive system development life cy-
cles.

6.1 Model Instantiation
TRIAD, as described in Section 2, is very generic in nature, partitioning the design space into
three primary sectors: Architectural Strategy, Architectural Instantiation, and Environmental
Analysis. Sections 3 through 5 described in more detail the primary activities that need to
occur and structures that need to be documented in each of the model sectors. These activities
and structures could be assembled into a specific, working model in many ways. The details
of the best assemblage will depend largely on the domain of application and the skills of the
development team. Nevertheless, Figure 14 illustrates one approach that is still very general,
but shows how one might start the IAD spiral process, followed by iteration through the sec-
tor activities, and completing when an acceptable degree of residual risk is determined. A
similar illustrative model could be developed for enhancing an already existing architecture
into one with improved survivability properties.

Figure 14 shows three iterations of the spiral, culminating in acceptable residual risk. The
first iteration shown in the center of the figure starts the process off at a very high level of
abstraction by characterizing overall mission objectives, the general concept of operations,
and any structural constraints or external interfaces with which any architecture will have to
conform. The idea at this point is not to necessarily have a firm idea of how the survivability
of the mission would be ensured, but just to get a general idea of what the information system
needs to accomplish and some idea of how this can be done within existing constraints. Sec-
tor III activities of this first iteration involve establishing who the adversaries to the organiza-
tion are likely to be and, from a high-level point of view, how they may impact system opera-
tions. Threat dynamics, as discussed previously, should be useful in this preliminary analysis.

The second and third iterations of the spiral in Figure 14 cycle through the major sector ac-
tivities. They cover strictly development concerns and do not deal with how they might be
integrated with evolution and maintenance processes—the subject of the next section. As in-

CMU/SEI-2002-TR-036 37

dicated, the generic survivability strategies will play a primary role in mitigation analysis and
the derivation of survivability requirements from this analysis. Survivability primitives are
central to establishing the technical architecture in Sector II. Requirements traceability plays

a major role in Sector I, through the top-down tracing of mission objectives to system opera-
tions, and in Sector II, through the bottom-up tracing of component responsibilities to the
survivability requirements. Generic attack patterns provide a foundation for the threat dynam-
ics analysis and attack tree refinement of Sector III. All of this information informs the resid-
ual risk assessment, which must also establish the likelihood and severity of potential attacks.

I Architectural
Strategy

Acceptable
risk

Compor ent Respoi sibilities

II Architectural
Instantiation

III Environmental
Analysis

Figure 14: Example Model Instantiation

As mentioned previously, we justify the basis of TRIAD in the spiral model since survivable
systems development is a domain in which the best directions for refinement are very unclear
during the early stages of system conception and refinement. Experimentation and analysis is
needed before a solution can be found with an acceptably small degree of residual risk of
mission failure. The specification and analysis performed within each sector is gradually re-
fined based on the experience of the previous iteration. Greater or fewer iterations may be

38 CMU/SEI-2002-TR-036

necessary, depending on the details of the specific application. We now turn to how we ex-
pect TRIAD design activities to be integrated with the general system development life cycle.

6.2 Model Incorporation
TRIAD deals with only a small, but important, part of the survivable system development life
cycle. In particular the model does not deal specifically with

• the implementation, evolution, or maintenance of the derived survivability architecture

• functions or properties required or desired of the system that do not contribute to the mis-
sion

• survivability-relevant failures due to internal faults or accidents

• program risks, such as funding or development team shortfalls, that are not due to mali-
cious activity

Incorporating TRIAD into an overall system development and maintenance (SDM) process
will help to resolve many of these issues. A detailed approach of how to do this depends
largely on the details of the system problem domain and the development environment, and is
beyond the scope of this report. We do, however, discuss some of the issues involved to pro-
vide a basis for formulating a comprehensive SDM process that incorporates IAD concepts.
Fortunately, iterative spiral models are as useful for characterizing system maintenance (or
enhancement) as they are for system development [Boehm 88].

As mentioned previously, the development of high-confidence information systems in com-
plex settings where the impact of intrusion failure is severe demands an iterated, risk-driven
process like the spiral model to gradually resolve uncertainties in the most efficacious man-
ner. Using TRIAD in the context of a comprehensive SDM spiral can proceed in two primary
ways (see Figure 15):

1. viewing TRIAD as an up-front mini-spiral. In this case, execution of the IAD process
leads to an advanced starting point for the larger SDM spiral.

2. unrolling TRIAD activities and documented structures into the first few cycles of the
SDM spiral. In this case, a more comprehensive integration of the two processes occurs.

The first of these methods is possible due to TRIAD'S focus on mission. We believe that mis-
sion-related survivability requirements must be used to determine the overall shape of the
architecture and must, therefore, be the focus of the initial iterations of the design process.
Functions or properties required or desired that do not contribute to the mission must fit
within the parameters defined by the survivability architecture and must not significantly
lower the confidence that the system owners have in that architecture.

The first method described above does not specifically permit considering risks associated
with non-malicious activities or events during the refinement of the survivability architecture.
TRIAD can be extended in a fairly straightforward manner to deal with survivability-related

CMU/SEI-2002-TR-036 39

non-malicious failures and accidents. Threat dynamics modeling and analysis of the impact
of external failures and natural accidents can proceed in much the same manner as for mali-
cious attacks. Accurately predicting the impact of internal faults on the mission may require
specifying greater detail of internal operations in the threat dynamics model. In addition, at-
tack tree modeling can be easily extended with fault tree analysis to analyze faults and acci-
dents at a lower level of abstraction, because of the parallels between the two techniques.

TRIAD
Remaining

SDM Process

I. Define
Problem

Extended Remaining
TRIAD SDM Process

I. Define . J>t— -;! II. Resolve
Probte m /^ \ ^\ Risks

IV. Plan ~"""^ III. Refine
Future Product

(1) (2)

Figure 15: TRIAD in SDM Process (1) as Mini-Spiral or (2) Through Integration

Non-malicious program risks, such as resource shortfalls, are more difficult to handle with
the first approach, since TRIAD deals only with operational risks during architecture formu-
lation. Choosing the second approach is appropriate if program risks are high or if effectively
dealing with them explicitly within the process cannot be postponed until after architecture
formulation. In this case, integrating IAD activities into the first few cycles of the compre-
hensive system development spiral permits resolving program risk early on, before too many

resources are expended in a programmatic dead end.

40 CMU/SEI-2002-TR-036

7 Conclusion

This report outlines an IAD model, called TRIAD, for systematically refining information
system architectures in complex, potentially unbounded, domains to prevent, monitor, detect,
and adapt to known and hypothesized patterns of attack. TRIAD facilitates planning for the
inevitable change to the threat and operational environment and helps trace the effect of
change back to the survivability requirements and architecture. The spiral structure of the
model iterates through three sectors of activity for developing architectural strategies, for in-
stantiating the architecture using architectural primitives, and for analyzing the impact of the
threat environment on system operations. TRIAD can be incorporated into the full system
development life cycle either as a separate up-front mini-spiral or by more fully integrating
design activities into the life-cycle process.

Although TRIAD presents only a broad-brush sketch of IAD activities, it provides a starting
point for the further refinement, experimentation, and validation of an approach to exploit our
understanding of intruder behavior to improve system architecture design and operations. In
the near term, we plan to continue to explore the viability of and refine TRIAD through its
application to the focused analysis of very specific problem situations. Each example will
involve the identification of a specific problem situation, a TRIAD analysis and mitigation of
that situation, and a characterization of the improvement gained through the analysis and
mitigation. The improvement characterization will be a comparison of the problem situation
before and after TRIAD analysis and mitigation.

By focusing on a specific problem in a narrow domain, we expect to get quick feedback on
the efficacy of the model and insights into how to improve it. Feedback will help us under-
stand the relationship and dependencies among sector activities and data. Different prob-
lem/mitigation approaches will be investigated in the examples to increase the experience
gained and insights gleaned, e.g., passive versus active defenses, military versus commercial
domains, COTS versus custom solutions, and technological versus procedural countermea-
sures. In each case, the problem situation will be restricted to a particular malicious threat and
its impact in the domain of interest. We expect this focusing to streamline the TRIAD mitiga-
tion and analysis to one iteration of the full model, with little or no formal requirements trac-
ing, thus ensuring the relative expediency of results.

Later work will involve a full-scale application of TRIAD to demonstrate its scalability to
more complex problems. This demonstration requires assembling the TRIAD activities and
structures into a working system development life-cycle model appropriate to the application

CMU/SEI-2002-TR-036 41

domain and development environment. This report documents one approach that shows how
one might start the TRIAD spiral process, followed by iterations through the sector activities,
and completing when an acceptable degree of residual risk is determined. In addition to refin-
ing TRIAD based on the full-scale application, we plan to develop a tutorial for its use, with
relevant examples, and initiate transition of the technology to an interested organization.
Documentation of these TRIAD case studies and a detailed set of guidelines for TRIAD'S
application in varied settings should help make a compelling case for the model's use and
transition. Ultimately, with evidence of its efficacy, we expect that TRIAD will be integrated
with more comprehensive life-cycle models for the development and maintenance of high-

confidence systems.

42 CMU/SEI-2002-TR-036

Bibliography

[Anderson 93] Anderson, R. "Why Cryptosystems Fail." Communications of the
ACM 37,11 (November 1994):32-40.

[Anderson 99] Anderson, R. EL; Feldman, R M.; Gerwehr, S.; Houghton, B. K.;
Mesic, R.; Pinder, J.; Rothenberg, J.; & Chiesa, J. R. Security of

the U.S. Defense Information Infrastructure: A Proposed Ap-
proach (RAND Report MR-993-OSD/NSA/DARPA). Santa
Monica, CA: RAND Corporation, 1999.

[Anderson 01] Anderson, R. Security Engineering: A Guide to Building Depend-
able Distributed Systems. New York, NY: John Wiley & Sons,
2001.

[Arbaugh 00] Arbaugh, W. A.; Fithen, W. L.; & McHugh, J. "Windows of Vul-
nerability: A Case Study Analysis." IEEE Computer 33,12 (De-
cember 2000): 52-59.

[Bass 98] Bass, L.; Clements, R; & Kazman, R. Software Architecture in
Practice. Boston, MA: Addison Wesley Longman, 1998.

[Bass 00] Bass, L.; Klein, M.; & Bachmann, F. Quality Attribute Design
Primitives (CMU/SEI-2000-TN-017, ADA392284). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University,

2000. <http://www.sei.cmu.edu/publications/documents
/O0.reports/00tn017.html> (2000).

[Bass 01] Bass, L.; Klein, M.; & Bachmann, F. "Quality Attribute Design:
Primitives and the Attribute Driven Design Method." 4th Confer-
ence on Product Family Engineering. Bilbao, Spain, 4 October

2001. <http://www.sei.cmu.edu/plp/bilbao_paper.pdf> (2001).

[Boehm 88] Boehm, B. "A Spiral Model of Software Development and En-
hancement." IEEE Communications 21, 5 (May 1988): 61-72.

CMU/SEI-2002-TR-036 43

[CERT 02] CERT Coordination Center. Overview of Attack Trends. Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon Uni-

versity, 2002.
<http://www.cert.org/archive/pdf/attack_trends.pdf> (2002).

[Clements 02] Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little,
R.; Nord, R.; & Stafford, J. Documenting Software Architectures.
Boston, MA: Addison Wesley Longman, 2002.

[Coyle 00] Coyle G "Qualitative and Quantitative Modeling in System Dy-
namics: Some Research Questions." System Dynamics Review 16,

3 (Fall 2000): 225-244.

[DITSCAP 99] U.S. Department of Defense. DoD Information Technology Secu-

rity Certification and Accreditation Process (DITSCAP). DoD
Instruction 5200.40, 30 November 1999.
<http://www. sabi.org/history.htrn> (2002).

[DoD 99] U.S. Department of Defense. Introduction to Threats to Depart-
ment of Defense Information Systems. Secret and Below Interop-
erability Initiative Report, 30 September 1999.
<http://www.sabi.org/history.htm> (2002).

[DoD 00] U.S. Department of Defense. Basic Risk Management for De-
partment of Defense Information Systems: Informal Reference
Guide Edition 1.1. Secret and Below Interoperability Initiative
Report, 21 January 2000. <http://www.sabi.org/history.htm>

(2002).

[Ellison 99] Ellison, R. J.; Fisher, D. A.; Linger, R. C; Lipson, H. J.; Long-
staff, T. A.; & Mead, N. R. Survivable Network Systems: An
Emerging Discipline (CMU/SEI-97-TR-013, ADA341963). Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon Uni-
versity, 1997, revised 1999. <http://www.sei.cmu.edu/publica-
tions/documents/97.reports/97tr013/97tr013abstract.html>

(1999).

44 CMU/SEI-2002-TR-036

[Fisher 99] Fisher, D. A. & Lipson, H. J. Emergent Algorithms: A New
Method for Enhancing Survivability in Unbounded Systems.

Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1999. <http://www.cert.org/archive/htrnl/emergent-

algor.htmlx

[Forrester 61] Forrester, J. W. Industrial Dynamics. Republished by Productiv-
ity Press, Portland, OR. Cambridge, MA: MIT Press, 1961.

[IATF 00] Information Assurance Technical Forum. "Information Assurance
for the Tactical Environment." IATF Release 3.1, September
2002. <http://www.iatf.net/framework_docs/version-3_l/>
(2002).

[Jacobson 99] Jacobson, Ivar; Booch, Grady; & Rumbaugh, James. The Unified

Software Development Process. Boston, MA: Addison Wesley
Longman, 1999.

[Knight 00] Knight, J. C; Sullivan, K. J.; Elder, M. C; & Wang, C. "Surviv-
ability Architectures: Issues and Approaches." Proceedings of the
2000 DARPA Information Survivability Conference and Exposi-

tion (DISCEX 2000). Hilton Head, South Carolina, Jan. 25-27,
2000. Los Alamitos, CA: IEEE Computer Society, 2000.

[Liu 01] Liu, A.; Bass, L.; & Klein, M. Analyzing Enterprise JavaBeans
Systems Using Quality Attribute Design Primitives (CMU/SEI-
2001-TN-025, ADA396123). Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University, 2001.
<http://www.sei.cmu.edu/publications/documents/01.reports
/01tn025.html> (2001).

[MAFTIA 02] MAFTIA Partners. Malicious- and Accidental-Fault Tolerance for
Internet Applications, 1ST Programme RTD Research Project
IST-1999-11583. <http://www.newcastle.research.ec.org/maftia>
(2002).

[Maier 00] Maier, M. W. & Rechtin, E. The Art of Systems Architecting.

Boca Raton, FL: CRC Press, 2000.

CMU/SEI-2002-TR-036 45

[Marmor-Squires 89] Marmor-Squires, A. B.; McHugh, J.; Branstad, M.; Danner, B.;

Magy, L.; Rougeau, P.; & Sterne, D. "A Risk Driven Process
Model for the Development of Trusted Systems." 184-192. Pro-

ceedings of the 1989 Computer Security Applications Conference.

Tucson, Arizona, December 4-8, 1989. Los Alamitos, CA: IEEE

Computer Society, 1990.

[McDermott 99] McDermott, J. & Fox, C. "Using Abuse Case Models for Secu-
rity." Proceedings of the 15'h Annual Computer Security Applica-

tions Conference. Phoenix, Arizona, Dec. 6-10, 1999. Los Alami-

tos, CA: IEEE Computer Society, 1999.
<http://www.computer.org/proceedings/acsac/0346/0346toc.htm>

(2002).

[McHugh 00] McHugh, J.; Christie, A.; & Allen, J. "Defending Yourself: The
Role of Intrusion Detection Systems." IEEE Software 17,5 (Sep-

tember/October 2000): 42-51.

[Mead 00] Mead, N.; Ellison R.; Linger R.; Longstaff, T; & McHugh, J.
Survivable Network Analysis Method (CMU/SEI-2000-TR-013,
ADA383771). Pittsburgh, PA: Software Engineering Institute,

Carnegie Mellon University, 2000.
<http://www.sei.cmu.edu/publications/documents/00.reports

/00tr013.html> (2000).

[Moore 01] Moore, A. P.; Ellison, R. J.; & Linger, R. C. Attack Modeling for
Information Security and Survivability (CMU/SEI-2001-TN-001,
ADA388771). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2001.
<http://www.sei.cmu.edu/publications/documents/01.reports

/01tn001.html>(2001).

[Neumann 00] Neumann, P. G Practical Architectures for Survivable Systems

and Networks. Technical report. Computer Science Laboratory,
SRI International, Menlo Park, CA, 30 June 2000.
<http://www.csl.sri.com/neumann/survivability.pdf> (2000).

46 CMU/SEI-2002-TR-036

[Potts 95] Potts, C. "Using Schematic Scenarios to Understand User
Needs." 247-256. Proceedings of DIS'95—ACM Symposium on
Designing Interactive Systems: Processes, Practices, Methods, &

Techniques. Ann Arbor, Michigan, Aug. 23-25, 1995. New York,
NY: ACM Press, 1995.

[Prowell 99] Prowell, S. J.; Trammell, C. J.; Linger, R. C; & Poore, J. H.
Cleanroom Software Engineering: Technology and Process. Bos-
ton, MA: Addison Wesley Longman, 1999.

[Ramachandran 02] Ramachandran, J. Designing Security Architecture Solutions.

New York, NY: John Wiley & Sons, 2002.

[Ramesh 97] Ramesh, B. Annals of Software Engineering 3 (1997): 397-415.

[Ramesh 98] Ramesh, B. "Factors Influencing Requirements Traceability Prac-
tice." Communications of the ACM 41, 12 (December 1998):37-
44.

[Salter 98] Salter, C; Saydjari, O.; Schneier, B.; & Walner, J. 'Toward a Se-
cure System Engineering Methodology." Proceedings Of New
Security Paradigms Workshop. Charlottesville, Virginia, Sept. 22-
25, 1998. New York, NY: ACM Press, 1998.

[Schneier 99]

[Schneier 00a]

Schneier, B. "Attack Trees: Modeling Security Threats," Dr.
Dobb's Journal, December 1999.

Schneier, B. "Closing the Window of Exposure: Reflections on
the Future of Security." Securityfocus.com, 2000.
<http://online.securityfocus.com/guest/3384>.

[Schneier 00b] Schneier, B. Secrets and Lies: Digital Security in a Networked
World. New York, NY: John Wiley & Sons, 2000.

[Shaw 96] Shaw, M. & Garlan, D. Software Architecture: Perspectives on an

Emerging Discipline. Upper Saddle River, NJ: Prentice Hall,
1996.

CMU/SEI-2002-TR-036 47

[Soo Hoo 00] Soo Hoo, K. J. How Much Is Enough? A Risk-Management Ap-

proach to Computer Security. Report of the Consortium for Re-
search on Information Security and Policy, Center for Interna-
tional Security and Cooperation, Stanford University, June 2000.
<http://ldml.stanford.edu/cisac/pdf/soohoo.pdf> (2002).

[Sterman 00] Sterman, J. D. Business Dynamics: Systems Thinking and Model-
ing for a Complex World. Burr Ridge, IL: McGraw-Hill Higher

Education, 2000.

[VatisOl] Vatis, M. A. Cyber Attacks During the War on Terrorism: A Pre-

dictive Analysis. Hanover, NH: Institute for Security Technology

Studies at Dartmouth College, 2001.
<http://www.ists.dartmouth.edu/ISTS/counterterrorism

/cyber_attacks.htm>.

[van Lamsweerde 00] van Lamsweerde, A. & Letier, E. "Handling Obstacles in Goal-
Oriented Requirements Engineering." IEEE Transactions on Soft-
ware Engineering 26, 10 (October 2000): 978-1005.

[Weidenhaupt 98] Weidenhaupt, K.; Pohl, K.; Jarke, M.; & Haumer, P. "Scenarios in
System Development: Current Practice." IEEE Software 15, 2

(March/April 1998): 34-45.

[Wolstenholme 90] Wolstenholme, E. F. System Enquiry: A System Dynamics Ap-

proach. New York, NY: John Wiley & Sons, 1990.

[Wolstenholme 93] Wolstenholme, E. F.; Henderson, S.; & Gavine, A. The Evalua-
tion of Management Information Systems: A Dynamic and Holis-

tic Approach. New York, NY: John Wiley & Sons, 1993.

48 CMU/SEI-2002-TR-036

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

REPORT DATE

October 2002

REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Trustworthy Refinement Through Intrusion-Aware Design

5. FUNDING NUMBERS

F19628-00-C-0003

AUTHOR(S)

Robert J. Ellison, Andrew P. Moore

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION

REPORT NUMBER

CMU/SEI-2002-TR-036

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQESC/XPK
5 Eglin Street
HanscomAFB,MA01731-2116

10. SPONSORING/MONITORING AGENCY

REPORT NUMBER

ESC-TR-2002-036

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

High confidence in a system's survivability requires an accurate understanding of the system's threat envi-
ronment and the impact of that environment on system operations. Unfortunately, existing development
methods for secure and survivable information systems often have a patchwork approach in which the focus
is on deciding which popular security components to integrate rather than making a rational assessment of
how to address the attacks that are likely to compromise the overall mission. This report proposes an intru-
sion-aware design model called trustworthy refinement through intrusion-aware design (TRIAD). TRIAD en-
ables information system engineers to use known and hypothesized attack patterns to iteratively improve and
continually maintain system survivability, even as the system and threat environment evolve over time.

14. SUBJECT TERMS

survivability, intrusion-aware design, survivable systems develop-
ment, system architecting

15. NUMBER OF PAGES

62

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF

THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

